
Computer Networks 56 (2012) 448–461
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Secure instant messaging in enterprise-like networks q

Mengjun Xie a, Zhenyu Wu b, Haining Wang b,⇑
a Computer Science Department, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
b Computer Science Department, College of William and Mary, Williamsburg, VA 23185, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 July 2010
Received in revised form 16 May 2011
Accepted 7 September 2011
Available online 17 October 2011

Keywords:
Instant messaging
Security
Enterprise networks
1389-1286/$ - see front matter � 2011 Published b
doi:10.1016/j.comnet.2011.09.006

q The preliminary version of this paper was appe
ings of ACSAC 2007 [1].
⇑ Corresponding author.

E-mail addresses: mxxie@ualr.edu (M. Xie),
(Z. Wu), hnw@cs.wm.edu (H. Wang).
Instant messaging (IM) has been one of most frequently used malware attack vectors due
to its popularity. However, previous solutions are ineffective to defend against IM malware
in an enterprise-like network environment, mainly because of high false positive rate and
the requirement of the IM server being inside the protected network. In this paper, we pro-
pose a novel IM malware detection and suppression mechanism, HoneyIM, which guaran-
tees almost zero false positive on detecting and blocking IM malware in an enterprise-like
network. The detection of HoneyIM is based on the concept of honeypot. HoneyIM uses
decoy accounts to trap IM malware by leveraging malware spreading characteristics. Fed
with accurate detection results, the suppression of HoneyIM can conduct a network-wide
blocking. In addition, HoneyIM delivers attack information to network administrators in
real-time so that system quarantine and recovery can be quickly performed. The core
design of HoneyIM is generic, and can be applied to the scenarios that either enterprise
IM services or public IM services are used in the protected network. Based on open-source
IM client Pidgin and client honeypot Capture, we build a prototype of HoneyIM and val-
idate its efficacy through both simulations and real experiments. Our results show that
HoneyIM provides effective protection against IM malware in enterprise-like networks.

� 2011 Published by Elsevier B.V.
1. Introduction

Instant messaging (IM) has been widely used in enter-
prise environments. According to [2], the daily number of
instant messages sent within enterprises around the world
is 15 billion in 2009, and will be tripled in 2013, reaching
46 billion. However, large user base and communication
immediacy also attract malware to land on IM, which is
particularly ideal for malware propagation. By virtue of
IM features and social engineering tricks, IM malware
can spread quickly and stealthily, which poses a serious
security threat not only to home IM users but also to
organizations which allow the use of instant messaging
y Elsevier B.V.

ared in the proceed-

adamwu@cs.wm.edu
in workplace. The IM malware studied in this paper refers
to the malicious code that spreads through the Internet-
based IM networks such as Windows Live Messenger (for-
merly named MSN Messenger) and AOL Instant Messenger
(AIM), which have dedicated servers for account manage-
ment and message relay. Bropia [3] that attacks MSN Mes-
senger and Opanki [4] that attacks AIM are two examples
of IM malware. Most of known IM malware spreads
through public IM networks. Security breaches caused by
IM malware not only result in individual system damage
and financial losses, but also often seriously degrade the
usability of IM service. For example, in November 2010,
the spread of IM malware forced Microsoft to temporarily
turn off active link functionality in Windows Live Messen-
ger 2009 because the malware propagates through instant
messages with malicious URL links [5]. IM malware can
also penetrate enterprise IM systems such as IBM Lotus
Sametime [6] and Microsoft Lync Server [7] as these
corporate IM services usually provide connectivity and

http://dx.doi.org/10.1016/j.comnet.2011.09.006
mailto:mxxie@ualr.edu
mailto:adamwu@cs.wm.edu
mailto:hnw@cs.wm.edu
http://dx.doi.org/10.1016/j.comnet.2011.09.006
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

M. Xie et al. / Computer Networks 56 (2012) 448–461 449
interoperability with public IM services. In 2005, the out-
break of a variant of Kelvir worm even forced Reuters to
shut down its IM service [8].

File transfer and URL (Uniform Resource Locator)-
embedded message are two major spreading vectors of
IM malware. After compromising an IM client, the malware
propagates itself by either making a malicious file transfer
or sending a text message containing a malicious URL to
the online users1 in the victim’s contact list. The contact list
is also called buddy list. Once those invigilant contacts click
the file or URL, malicious code will be triggered to execute or
be downloaded from the URL and executed, and subse-
quently the malware propagation continues at an exponen-
tially increasing speed.

Although the threat of IM malware, especially the out-
break of zero-day IM malware, is on the rise, network
administrators still lack effective solutions to protect
enterprise-like networks such as campus networks and
corporate networks. Conventional protections using fire-
walls and anti-virus products are insufficient to defend
against IM malware due to the unique propagation feature
of IM malware. Most of popular IM protocols are able to
circumvent firewalls if their default ports are blocked.
Signature-based anti-virus products cannot detect zero-
day IM malware. Meanwhile, anomaly detection tech-
niques, such as Norman Sandbox technology [9], may also
be ineffective in catching evasive malware which behaves
differently in the sandbox environment. Compared to mali-
cious file transfers, malicious-URL-embedded IM messages
are even harder to be identified by firewalls and anti-virus
programs. Although there exist many URL blacklists such
as Google Safe Browsing API [10], SURBL [11], and URIBL
[12], a recent IM threat characterization study shows that
the majority of malicious URLs sent from IM malware slip
through those blacklists [13].

IM providers may take quick responses, e.g., releasing
patches and mandating client upgrade, to newly discov-
ered vulnerabilities in their products. They may even pro-
actively block potentially malicious file transfers. However,
these filtering mechanisms still could be bypassed [14,15].
Moreover, it is extremely hard for IM providers to protect
against malicious URLs that exploit the vulnerabilities of
Web browsers or other related applications [16]. While
some protection schemes, such as CAPTCHA and virus
throttling for IM [17,18], can enhance IM security, the in-
curred overhead and usability degradation could be signif-
icant, and thus prohibit IM providers from using them in
near future.

Motivated by the shortage of effective defense against
IM malware, we propose HoneyIM, a framework for auto-
mating the process of IM malware detection and suppres-
sion in an enterprise-like network. Based on the concept of
honeypot, HoneyIM detects IM malware by leveraging its
inherent spreading characteristics. Specifically, HoneyIM
uses decoy accounts in normal users’ contact lists as sen-
sors to capture malicious content sent by IM malware,
which achieves almost zero false positive. With accurate
detection, HoneyIM suppresses malware by performing
1 Offline contacts may also be attacked but this type of attack is rare.
network-wide blocking. In addition, HoneyIM delivers at-
tack information to network administrators for system
quarantine and recovery. The core design of HoneyIM is
generic and can be applied to a network that uses either
private (enterprise) or public IM services. We implement
a prototype of HoneyIM for public IM services, based on
open-source IM client Pidgin [19] and client honeypot
Capture [20]. We validate the efficacy of HoneyIM
through both simulations and real experiments. The simu-
lations show that even only a small portion, e.g., 5%, of IM
users in the network have decoys in their contact lists,
HoneyIM can detect the IM malware as early as after
0.4% (on average) of IM users are infected. The experimen-
tal results demonstrate that the prototype system succeeds
in detection, suppression, and notification of IM malware
within seconds.

The remainder of the paper is structured as follows.
Section 2 describes the major spreading mechanisms of
IM malware and related work. Section 3 presents our
measurement study on IM user communication. Section 4
details the framework of HoneyIM, followed by the imple-
mentation and evaluation of HoneyIM in Sections 5 and 6,
respectively. Section 7 discusses possible evasion to
HoneyIM and the countermeasures. Finally, we conclude
the paper in Section 8.
2. Background and related work

2.1. IM malware

IM malware propagates mainly through two ways:
malicious file transfer and malicious URL in text message.
Usually the malware infection is triggered by the victim’s
action such as clicking the transferred file or the received
URL. IM malware could also spread without victim’s
involvement, e.g., by exploiting the vulnerabilities in IM
clients. However, this type of spreading vector is rare.

In the file transfer mechanism that has been used since
early 2000s, IM malware propagates by initiating malicious
file transfers to remote contacts. Malicious files are usually
renamed to attract victims or to evade network filters.
Once a victim clicks the file, the malware is invoked and
will attempt to infect more victims in the contact list. To
counter this type of malware spreading, some IMs such
as MSN forbid IM clients to transfer certain types of files
such as .pif files. While the actual file transfer is normally
carried out directly between two IM clients, the messages
for transfer establishment still go through IM server.
Therefore, IM servers can easily detect the messages for
establishing malicious file transfers and silently drop them
to block malware propagation.

Nowadays malicious URL messages become much more
popular than malicious file transfer for IM malware propa-
gation. Instead of sending a file, IM malware sends a text
message containing a malicious URL to remote contacts.
Once a victim clicks the link, either a malware binary is
downloaded and executed or some malicious web scripts
run to exploit the vulnerabilities of the Web browser or
other related applications. Compared to malicious file
transfers, malicious URL messages have several advantages

450 M. Xie et al. / Computer Networks 56 (2012) 448–461
in propagation. First, malicious URL messages have more
means to compromise a system. File downloading is just
one of its attacking vectors. Second, malicious URLs can
be used to collect victims’ information by exploiting Web
functionality. For instance, the URL sent by Kelvir [21]
points to a php script and contains the contact’s email ad-
dress. The email address is harvested as soon as the URL is
clicked. Last but not least, IM malware can play more social
engineering tricks on URLs. For example, a malicious URL
can be crafted to mimic the link on a reputable Web site
[22]. The IM clients supporting HTML scripts also provide
a playground for IM malware to fake URLs at their will.
Those forged URLs appear normal but in fact point to mali-
cious webpages.

After infection, IM malware may take different actions
for propagation. Many types of malware start spreading
immediately after they compromise IM clients, while oth-
ers wait until they receive instructions to spread. The latter
usually install certain bot programs on compromised ma-
chines, through which the malware is controlled by the re-
mote bot herder.

2.2. Related work

The security threats posed by IM malware have been
studied in [23,24]. In [23], the spreading speed of IM mal-
ware is estimated, showing that 500,000 machines could
be infected within a minute.

The network properties and communication character-
istics of instant messaging have been extensively studied
and leveraged by previous defense schemes against IM
malware. Avrahami and Hudson [25] explored communi-
cation characteristics of 16 IM users using five-month user
logs. Xiao et al. [26] investigated IM traffic characteristics
of hundreds of users by analyzing one-month network
traffic trace of two popular IM systems (AIM and MSN)
captured within a large enterprise. Leskovec and Horvitz
[27] studied structural properties and communication pat-
terns of the global MSN network using a full-month data-
set of the whole MSN system. Several independent
measurement studies [18,28,29] have revealed that IM so-
cial networks formed by IM contacts are scale-free, that is,
the IM network connectivities follow power-law distribu-
tions. However, Xiao et al. [26] suggested that Weibull dis-
tributions may be more appropriate for describing the
connectivity of IM social networks. Leskovec and Horvitz
[27] found that the degree distribution of the global MSN
network formed by actual IM communication is heavy
tailed but does not follow a power-law distribution.

For scale-free networks, a small portion of nodes that
are highly connected have significant effect on mitigating
malware spread. Based on this observation, Smith [29] pro-
posed to delay the propagation of IM malware by disabling
the accounts of most connected IM users on the network.
This scheme needs to be deployed on IM servers. It only re-
duces the spread speed and may have significant side-
effects. Williamson et al. [18] applied their virus throttling
mechanism to instant messaging and demonstrated its
effectiveness through simulation. The throttling to IM also
needs to be conducted at server side. The throttling be-
comes blind blocking if its threshold is very restrictive,
which degrades IM usability. Mannan and van Oorschot
[17] proposed two defense methods, namely limited throt-
tling and CAPTCHA-based challenge-response. They also
provided a usage study on per-user frequency of IM text
messages and file transfers to support the applicability of
the CAPTCHA-based challenge-response scheme. Liu et al.
modeled the spread of IM malware using multicast tree
[30] and analogous branching process with varied lifetime
[31]. HoneyIM is orthogonal to all the aforementioned
schemes and therefore is compatible with them.

Honeypot technologies [32,33] have been widely used
in computer security research. A honeypot is a system or
resource that is deployed to lure malicious activities. Seif-
ert et al. provided a detailed taxonomy of honeypots in
[34]. Traditionally, honeypots are servers (or devices that
expose server services) configured passively to be attacked.
In [35], Wang proposed the concept of client honeypot and
introduced the first open-source client honeypot imple-
mentation, honeyclient. A client honeypot is a system or
tool that mimics a user-driven network client application
and interacts with the server in question to examine
whether the server contains malicious content. Due to
the popularity of Web, the focus of client honeypots is of-
ten on Web browsers. In [36], Wang et al. developed an
Internet Explorer based high-interaction client honeypot
called HoneyMonkey and demonstrated its effectiveness
on finding a large number of malicious Web sites in a fully
automatic manner. Capture [20] is an open-source high-
interaction client honeypot supporting major Web brows-
ers and HTTP aware applications. Besides high-interaction
client honeypot systems that are fully functional systems,
there are a number of low-interaction client honeypot
implementations, which are also called virtual honeypots.
A low-interaction client honeypot does not use a real client
application such as Web browser, but rather uses a light-
weight or emulated client. HoneyC [37] is a low-interac-
tion client honeypot that drives a Web browser emulator
to interact with Web servers. Recently, Nazario [38]
developed another open-source virtual client honeypot
named PhoneyC. PhoneyC is capable of deobfuscating
malicious content in Web pages and emulating specific
vulnerabilities.

Honeypot technologies have been applied to measuring
and characterizing IM threats. Trivedi et al. studied the
network and content characteristics of spim, the spam
messages on IM networks, by using a proxy server as hon-
eypot [39]. Their work is different from HoneyIM, since
[39] is a measurement study and it targets spim but not
IM malware. The honeypot used in [39] refers to a SOCKS
proxy, which is exploited by spimmers to conceal their
identities. Antonatos et al. conducted a more systematic
characterization of IM threats using HoneyBuddy [13].
HoneyBuddy is quite similar to HoneyIM in the design:
both systems leverage decoy accounts to trap malicious file
transfer requests and IM messages and detect IM malware.
However, HoneyBuddy is designed for measuring IM
threats over the Internet. Therefore, HoneyBuddy does
not have suppression and notification functionality. Being
deployed in an open environment, HoneyBuddy is
equipped with the functionality of actively searching and
adding new ‘‘buddies’’ to its decoy accounts, while this

M. Xie et al. / Computer Networks 56 (2012) 448–461 451
functionality is not necessary for HoneyIM as HoneyIM is
designed for a closed environment.

Yan et al. proposed two algorithms that are based on
change-point detection to detect both fast scanning and
self-restraining IM malware [40]. The algorithm for detect-
ing fast scanning IM malware applies the CUSUM algo-
rithm to discover the abrupt increase of file transfer
requests or URL embedded IM messages; The algorithm
for detecting self-restraining IM malware leverages the so-
cial intimacy characteristic of IM users to identify the file
transfer requests or malicious IM messages issued by
stealthy IM malware. Both algorithms are designed for ser-
ver-side deployment.
3. Measurement

Effective countermeasures against IM malware require
a thorough understanding of normal IM user behaviors.
However, most of existing IM measurement studies focus
on either structural properties of IM networks (e.g.,
[29,26]) or high-level communication patterns of IM users
(e.g., [27]). In [25], a behavior characterization of 16 IM
users was conducted to help build a prediction model of
interpersonal relationship. To date, a study of IM user
behavior characterization for the purpose of IM security
is still missing but much needed.

In this section, we give an analysis of IM user communi-
cation patterns based on the log histories of 34 MSN users.
Compared to [25], our data set is much larger. The total
number of messages we collected is over 1 million while
the number of messages studied in [25] is only around
92 thousand. The maximum timespan of log histories is
five months in [25] while ours is over seven years. The
long-time history logs and the large number of messages
greatly strengthen our analysis, and we believe that the re-
vealed results can shed light on the design of future IM
malware countermeasures.

We chose MSN as the IM system for characterization
due to its worldwide popularity. For those volunteers
who would like to contribute their MSN log history files,
we sent them a special program to anonymize data. All
names in a log file were replaced by numbers and message
contents were removed. The anonymized information was
then stored into an XML file and sent back to us. In total,
we have 34 volunteers who contributed their chatting his-
tories. Among them, 18 are female and 16 are male. The
data set contains the logs from both home and workplace
(office or school).

Table 1 provides a brief summary of the collected data.
For each contributor, we calculate the numbers of active
Table 1
Overview of the collected MSN log information.

Statistics Active buddies Sessions M

Sum 2301 60,421 1
Min 6 14 2
Max 394 9911 2
Median 52 947 1
Mean ± std 67.7 ± 73.5 1,777.1 ± 2,145.9 3
buddies, sessions, and messages, the aggregated size of
messages, and the timespan of the chatting history from
his/her history logs. Then, we aggregate the data of all con-
tributors and compute the following statistics: sum, min,
max, median, and mean/std, for each of the five attributes
and list them in Table 1. An active buddy refers to such a
person with whom at least one conversation (either send-
ing or receiving a message) was recorded. Clearly, the
number of active buddies is the lower bound of the num-
ber of all contacts in the buddy-list. For each active buddy,
MSN messengers maintain a log file that contains all the
chats with the buddy. For MSN messengers, messages dis-
played in the same chatting window are grouped into a
session, and the timestamp of the first (last) message is
the start (end) time of the session. Each message is a string
of characters ended with a return character, and its size
only accounts for the content in plain text. All HTML tags
in a chat are removed and not considered in size calcula-
tion. The timespan of a contributor’s chatting history is
determined by the earliest and latest messages in his/her
logs.

The collected chatting histories contain a total of
1,237,150 incoming and outgoing instant messages, which
belong to 60,421 sessions between 34 contributors and
their 2,301 buddies and have 16,589,882 bytes. From the
table, we can see that each attribute manifests a high var-
iance, as indicated by the coefficient of variation (CV) of
each attribute being greater than 1. For example, a contrib-
utor can have as few as six active buddies but can also have
as many as 394 buddies for chatting. We further find out
that aggregation is not a major cause of the high variation.
The numbers of sessions/messages averaged over buddies
and/or days still significantly vary across contributors.
The root cause we believe lies in the very different user
behaviors.

To better understand the session-level user behavior,
we aggregate all the sessions together from the history logs
of 34 contributors and compute the statistics per session.
Fig. 1 shows the CDF of message number (in solid line)
and the CDF of message size in terms of byte (in dashed
line). Note that the X axis is log-scaled. We can see that
20% of sessions have only one message, which means in
those sessions the chatting window is immediately closed
after sending or receiving a message line. About 65% of ses-
sions have ten messages or less and 96% of sessions have
one hundred messages or less, indicating that in general
a chatting window do not stay for long time. The majority
of sessions (over 90%) contain messages of one kilobyte
(KB) or less. The message number per session and the mes-
sage size per session both present high variance. Their cor-
responding CVs are 3.6 an 3.1, respectively.
essages Size (byte) Timespan (day)

,237,150 16,589,882 20,573
93 3720 16
54,542 3,180,019 2695
3,680 208,800 365
6,387 ± 56,539 487,940 ± 683,810 605.1 ± 641.6

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr

ob

Messages per session
Bytes per session

Fig. 1. CDFs of message number and message size per session.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of turns per session

Pr
ob

Fig. 3. CDF of the number of turns per session.

452 M. Xie et al. / Computer Networks 56 (2012) 448–461
We further compute the CDFs of session interval and
session duration (both in second) and display them in
Fig. 2. Because around 20% of sessions contain only one
message, their corresponding session duration is zero.
Clearly, session duration is at least one order of magnitude
shorter than session interval. The average session duration
is 3,404 s (close to one hour) while the average session
interval is 802,980 s (over nine days). Both session dura-
tion and session interval are highly dynamic and their
CVs are 10.1 and 5.0, respectively.

As instant messaging provides an online communica-
tion medium, through which text-based human interaction
occurs in nearly real-time, we are particularly interested in
the interactive characteristics of IM users. In each session,
we group consecutive messages sent by the same user into
a single turn and dissect the session into one or more turns.
In total, we obtain 710,045 turns from all the sessions.
Although the recent versions of MSN messenger support
multi-user session in which more than two users partici-
pate in the conversation, we find that the percentage of
multi-user sessions is negligible in our collected data.
The CDF of the number of turns per session is presented
100 102 104 106 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

Pr
ob

Session duration
Session interval

Fig. 2. CDFs of session interval and session duration.
in Fig. 3. From the figure, we can see that about 30% of ses-
sions contain one turn. Therefore, the majority (�70%) of
sessions have two or more turns. In other words, most of
the time a chatting window will not be closed before a re-
sponse is received. Simply put, high communication inter-
activity manifests at the session level.

Fig. 4 depicts the CDFs of message number per turn and
message size per turn. Notably, 97% of turns are composed
by 100 or less bytes; 62% of turns have one message and
99% of turns consist of five or less messages, which further
reveals the interactive nature of IM communication. For
those sessions including multiple turns, the communica-
tion is conducted in a manner very similar to that of nor-
mal face-to-face conversation: speaking by turns and in
short sentences. Similar to session-level measures, the dis-
tributions of turn-level message numbers and message
sizes also show large variation. The CVs of message num-
bers and message sizes are 8.6 and 6.7, respectively.

Another visible feature of interactive conversation is
that usually either party tries to speak concisely and be
responsive. Instant messaging also demonstrates this
100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

Messages per turn
Bytes per turn

Fig. 4. CDFs of message number and message size per turn.

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

Pr
ob

Turn gap
Turn duration

Fig. 5. CDFs of turn gap and turn duration.
Fig. 6. Working mechanism of HoneyIM.

M. Xie et al. / Computer Networks 56 (2012) 448–461 453
feature. Fig. 5 shows the CDFs of turn gap (the interval
between two consecutive turns) and turn duration (the
interval between the first message and the last one in a
turn). Since 62% of turns are made up of a single message,
in which the message is both the first and the last, the
duration of those turns becomes zero. The fact that 97%
of turn durations and 93% of turn gaps are two minutes
or less, clearly indicates the highly interactive feature of
IM usage.
2 Doing this is to block accesses to malicious contents, e.g., malicious
URLs.
4. HoneyIM framework

HoneyIM aims to assist network administrators in IM
malware defense by automating the process of malware
detection and suppression in an enterprise-like network.
Utilizing the innate spreading characteristics of IM malware
and applying the concept of honeypot, HoneyIM can detect
and block unknown IM malware at its early stage of spread-
ing, which greatly facilitates network filtration and system
quarantine and recovery. In this section, we first give an
overview of HoneyIM, how and why it can detect IM mal-
ware early. Then, we discuss several issues that need to be
considered when using HoneyIM in practice. After that, we
present the design of HoneyIM and the functionality of its
components. Finally, we describe the deployment of Honey-
IM in an enterprise-like network.

4.1. Overview

HoneyIM is based on the concept of honeypot. As an
effective intrusion detection technology, honeypot has
been used widely [32,33]. According to [32], a honeypot is
an information system resource whose value lies in unautho-
rized or illicit use of that resource. Not only can a honeypot
be a physical machine or a specialized program, which is a
common case, but it can also be an e-mail address, or even
an IM decoy user. Since IM malware always attempts to in-
fect other users on the victim’s contact list, HoneyIM cap-
tures this essence and exploits decoy users to detect IM
malware. Under normal circumstances, a client user does
not initiate a conversation with a decoy user. Therefore,
if the decoy user receives a file transfer request or a URL-
embedded text message originated from a client user, it
is highly probable that malware is spreading and the re-
quest/message sender has been compromised. Thanks to
decoy users, HoneyIM can achieve almost zero false posi-
tive in detection. This strong guarantee, which is rarely of-
fered by other schemes, relieves network administrators
from worrying about possible interruption to normal IM
users caused by the protection technique. In addition, Hon-
eyIM can block malicious content that has been detected
and inform network administrators of the attack informa-
tion, e.g., the IP address of the compromised machine, in
real-time.

Fig. 6 illustrates the working mechanism of HoneyIM.
The IM user with an icon of honeypot is the one whose
contact list contains a decoy user. The events happen in
the following sequence. (1) Some IM malware compro-
mises an IM client and (2) propagates. However, (3) when
it tries to spread again, it hits a decoy user and (4) is de-
tected by HoneyIM. (5) HoneyIM blocks the malicious con-
tent in IM traffic (either at the edge gateway or at the IM
server if the IM service is provided within the network)
and non-IM traffic2 instantly, and notifies the attack infor-
mation to the network administrator.

HoneyIM is designed to be independent, with no
restriction on the type and location of IM servers. There-
fore, the framework of HoneyIM can be flexibly realized
under the context of either public IM services or private
(enterprise) IM services being used in the protected net-
work. The core of HoneyIM is the same for both server-
enhanced realization (HoneyIM with private servers) and
serverless realization (with public servers). The difference
lies in the implementation and deployment, which will
be discussed in Section 4.4. The framework of HoneyIM
consists of several modules and these modules can be de-
ployed in a single machine or at different places.

Fig. 7. Framework of HoneyIM.

3 Close-source IM systems are not a problem to HoneyIM as long as their
IM protocols are known. Skype is an exception. It not only is close-sourced
but also applies strong encryption to all communications.

454 M. Xie et al. / Computer Networks 56 (2012) 448–461
4.2. Design issues

The success of HoneyIM largely depends on the use of
decoy users. In the following, we discuss three issues of
HoneyIM that are much related to decoy users, including
initialization, sensitivity, and compatibility.

The initialization of HoneyIM mainly refers to the crea-
tion and addition of decoy user accounts. Strictly speaking,
it is a deployment issue. If public IM services are used in the
protected network, the administrators need to create decoy
accounts and solicit the IM users within the organization
who are willing to add those decoy users into their contact
lists. The process is basically the same as a normal IM user
adding a new buddy. The administrators are also responsi-
ble for authorizing and authenticating the volunteer users
to prevent external IM users from becoming a decoy user’s
friends. On the other hand, if an enterprise IM service is em-
ployed, the creation and addition of decoy users can be
done automatically by programming the IM server. How-
ever, the IM system must notify users of the purpose and
usage of decoy accounts, and provide a disable (or opt-
out) option. The decision of how many decoy accounts to
set up should consider both the number of IM users under
protection and the overhead of setup and maintenance.
On one hand, more decoy accounts provide more flexibility
of mimicking human users, helping improve detection rate.
On the other hand, more decoy accounts make account set-
up and maintenance more complicated.

The initialization of HoneyIM is a one-time fulfillment
and its overhead can be much reduced by using tools that
automate administrative tasks such as AutoIt [41]. The
maintenance of decoy accounts, for example, changing
profiles of decoy accounts, adding or deleting decoy ac-
counts, can be performed when necessary. In addition to
the volunteer policy for IM user cooperation, administra-
tors may require those IM users who have high connectiv-
ity degrees (in other words, the super nodes in IM
networks) to include decoy accounts in their contact lists.
These highly connected IM users are the critical points
along the malware propagation path.

The sensitivity of HoneyIM is measured by the ratio be-
tween the number of infected users and that of all IM users
in the protected network when the spreading of IM mal-
ware is first detected. The key factor affecting the sensitiv-
ity of HoneyIM is the coverage of HoneyIM—the portion of
the IM users equipped with decoy user accounts among all
IM users within the network. It is obvious that HoneyIM
cannot detect malware for those users who do not include
decoy accounts in their contact lists. Moreover, IM mal-
ware may intentionally or inadvertently bypass HoneyIM
by not hitting decoy users in the infected users’ contact
lists. The word ‘‘intentionally’’ does not mean that the IM
malware knows the decoys in advance, but reflects its
capability of distinguishing decoys from other contacts.
Here we assume that the threat comes from the outside
of the protected network and the inside IM users do not
collude with the outside attackers. Given the coverage of
HoneyIM, which is usually determined by the network
administration policy, we will consider how to counter
evasive IM malware to improve HoneyIM sensitivity in
Section 7.
Compatibility is not an issue if HoneyIM is deployed on
an enterprise IM server, since the server can maintain the
compatibility with supported IM clients. However, the
compatibility has to be taken into account if public IM ser-
vices are used in the protected network. Under this cir-
cumstance, various types of public IM systems may
coexist. This is especially true on the networks with less
strict IM usage policies such as campus networks. Thus,
HoneyIM should be able to communicate with different
types of IM clients when deployed for public IM services.
Today, this requirement can be easily fulfilled as the
majority of IM protocols are accessible and many open-
source IM clients such as Pidgin have the capability of
simultaneously joining multiple IM networks.3

4.3. System components

Fig. 7 shows the general framework of HoneyIM, which
comprises four modules each performing specific function-
ality. These modules can be deployed on either the same
machine or different hosts (or network devices). As dis-
played, the communication module is responsible for han-
dling IM traffic. It parses the IM traffic to decoy users and
delivers it to the detection module. The detection module
extracts attack vectors and related information from IM
messages, and then feeds them into the suppression and
notification modules. The suppression module sifts
through network traffic and filters out malicious traffic
containing attack vectors. Meanwhile, the notification
module informs administrators of the detected malware
spreading.

4.3.1. Communication module
The communication module is the base of HoneyIM. De-

coy accounts use it to join IM networks and communicate
with normal IM clients. This module realizes all necessary
functions of a normal IM client, such as adding/deleting a
friend, signing on/off, setting presence status, receiving
messages and files, etc. These functions are automatically
executed by default and can also be manually operated
by an administrator. The module only accepts the mes-
sages from ‘‘friends’’, that is, the authenticated and autho-
rized users in the contact list. In other words, messages
from external IM users will be regarded as ‘‘spim’’ (the
term for spam in IM networks) and discarded. Accepted

M. Xie et al. / Computer Networks 56 (2012) 448–461 455
messages are forwarded to the detection module. For a file
transfer request, the communication module accepts the
request and saves the file. At the same time, the module
also records the IP address of the sending host, which is
attainable as a file is usually transferred directly between
two IM clients. After receiving the whole file, the commu-
nication module forwards both the file and sending host
information to the detection module. For serverless reali-
zation of HoneyIM, the communication module is required
to support all the IM protocols of the protected IM services
and allow multiple decoy accounts to simultaneously log
into different IM networks when necessary, which can be
achieved by taking advantage of existing open-source IM
projects.
4.3.2. Detection module
The detection module serves three purposes: (1) detect-

ing compromised IM clients, (2) identifying attack vectors,
and (3) validating attack vectors. It accomplishes the first
two tasks by consulting the suppression module and scru-
tinizing IM messages delivered by the communication
module, and attains the last task by conducting deep-
inspection.

In principle, the detection module classifies a sending IM
client as compromised if a decoy account receives a file
transfer request or a text message with URL from the IM cli-
ent. The reason is that it is very rare for a normal user to is-
sue such a request or message to a decoy account.4 The
detection is not affected by encryption of client-to-client or
client-to-server communication because IM messages re-
ceived by a decoy (as a client) must be in plain-text. For IM
malware that spreads via file transfer, the detection module
obtains both the attack source (the IP address of the compro-
mised host) and malicious file from the communication
module. For IM malware that spreads through URL message,
the detection module extracts the URL from the message and
further derives the address of the sending host by consulting
the suppression module, which will be described shortly.

Furthermore, the detection module performs deep-
inspection to verify the virulence of the received file or
URL. There are many techniques available to achieve this
purpose. For example, for a received file, we can employ
dynamic taint analysis based techniques such as Taint-
Check [42] and Argos [43] to (1) examine whether the file
can compromise system and (2) generate the correspond-
ing signature if a compromise occurs. We can also adopt
client honeypot techniques such as HoneyMonkey [36]
and Capture [20] to examine received URLs. Both Honey-
Monkey and Capture can detect Web exploits by brows-
ing a URL inside a virtual machine and monitoring the
change of system states. In general, any effective and effi-
cient host-based anomaly detection technique can be used
for deep-inspection. HoneyIM does not contain any specific
technique for analyzing IM malware, but rather provides a
platform to apply existing techniques to malware dissec-
tion and leaves the decision of what technique to use to
administrator. The adopted techniques are implemented
4 Even if a normal user accidentally sends a message to the decoy
account, the message is usually a pure text message.
as plug-ins of the detection module, and the deep-inspec-
tion is conducted in a contained environment such as a vir-
tual machine to prevent HoneyIM itself from being
compromised.

It might be too expensive for those organizations that
are lack of resources to set up and maintain a dedicated on-
site deep-inspection module. An alternative option is to
outsource the deep-inspection function to third parities.
There exist a few anomaly detection websites such as Anu-
bis [44] and VirusTotal [45] that provide services of exam-
ining suspicious files and URLs and reporting analysis
results. To use these services, the detection module only
needs to send the file/URL to the indicated address via pub-
lic API and then wait for the result. Oursourcing deep-
inspection certainly simplifies the detection module and
saves the cost. However, possible side-effects such as de-
layed service response should also be considered.

The incorporation of deep-inspection is justified by the
following considerations. First, deep-inspection can further
reduce false positives. It is possible that innocent URLs or
files could be sent with malicious content by IM malware
to disguise their malice. Second, deep-inspection helps dis-
cover additional or real attack vectors used by IM malware.
For example, file deep-inspection can generate the signa-
ture of malware binary, based on which the filtering is
much more robust against evasion than based on file name.
IM malware can also use different URLs in its spreading,
which in fact are doorway webpages redirecting traffic to
the same website that hosts real exploits. With URL deep-
inspection, the protection can be further enhanced because
not only doorway URLs but also real exploit URLs can be
discovered. Last but not least, deep-inspection uncovers
the IM malware activities, such as the infection mechanism
and the infected files, for network administrators.

After attack vector extraction and validation, the detec-
tion module supplies the validated attack vectors and
sources to the suppression module for immediate network
traffic filtration. In the meantime, the detection module
feeds all collected attack information into the the notifica-
tion module, which informs network administrators of the
occurrence of an attack in real-time for prompt system
quarantine and recovery.

4.3.3. Suppression module
The suppression module in essence is a network filter. It

takes as input the attack source and vector information
from the detection module. Then, it blocks any traffic from
attack sources and filters out network traffic that contains
attack vectors. Different from other modules that have no
requirement for deployment location, the suppression
module should be installed at a network vantage point,
where it can monitor all traffic passing through the pro-
tected network. The location of the suppression module
will be further discussed in Section 4.4.

The suppression module consists of two components:
non-IM traffic filter and IM traffic filter. These two compo-
nents are logically independent for flexible implementa-
tion and deployment. The non-IM traffic filter fulfills two
tasks: blocking attack sources and filtering non-IM net-
work traffic. For the former, the filter simply drops any
packet from the attack sources to terminate malware prop-

456 M. Xie et al. / Computer Networks 56 (2012) 448–461
agation. For the latter, the filter examines contents of in-
bound and outbound packets to identify if an internal user
is attempting to access a malicious webpage or transfer a
virulent file. Any packet containing a matched attack vec-
tor will be discarded.

The IM traffic filter also provides two functionalities.
The first is traffic filtration, which weeds out the IM mes-
sages that either come from (or go to) the compromised
clients or contain identified malicious file names or URLs.
Although a file is usually transferred between two clients,
the IM messages for establishing transfer connections are
relayed through servers in plain-text for mainstream IM
products. Therefore, blocking malicious file transfer by
dropping connection establishment messages is not af-
fected by client-to-client encryption. The second function-
ality of the IM traffic filter is to help identify malicious URL
sending hosts within the protected network. Because mes-
sages are relayed through server, the detection module
cannot identify the sources of malicious URL messages.
To track the IP address of the compromised host, the IM
traffic filter records the URLs and the corresponding IP ad-
dresses of their senders. With this information, the detec-
tion module can easily pinpoint the malicious URL senders.

4.3.4. Notification module
The notification module plays the role of messenger. Its

job is to inform network administrators of the occurrence
of IM malware spread upon the detection of an attack. Gi-
ven the fast spread of IM malware, the notification to net-
work administrators should be made in real-time or near
real-time by means of SMS (Short Messaging Service) or
IM. The notification module can also notify the victim
about the fact that his machine has been infected with
IM malware via IM or email.

4.4. Deployment

As mentioned in the overview section, HoneyIM can be
deployed with a private IM server inside the protected net-
work (server-enhanced deployment) or with public IM ser-
vices outside the network (serverless deployment). The
major differences between the two deployments lie in
the function location and system initialization of HoneyIM.
In serverless deployment, the non-IM and IM traffic filters
of the suppression module have to be placed on the net-
work edge device. However, in server-enhanced deploy-
ment, while the non-IM traffic filter still needs to be on
the network edge device, the best place for the IM traffic
filter is the private IM server, where the filter can see all
IM traffic. Moreover, in practice many IM servers already
include the message filtering functionality, making IM traf-
fic filtering much easier there.

The deployment of HoneyIM also involves system ini-
tialization, i.e., the creation and addition of decoy accounts.
In serverless deployment, network administrators need to
register accounts for decoy users on public IM services
before running HoneyIM. Due to the maximum size of
contact list (e.g., 600 for MSN) and the protection consider-
ation, the administrators can create multiple decoy
accounts and use them for different groups of IM users.
Then, the decoy accounts are added into the volunteer IM
users’ contact lists with their cooperation. By contrast,
the server-enhanced deployment saves the efforts of net-
work administrators and IM users by automating the crea-
tion and addition of decoy accounts, just like the use of
AIM Bots for shopping and movie guide. This can be
achieved by adding a decoy account management module
to the private IM server. The module can also be used to
(1) provide IM users with the information of decoy ac-
counts and the option to enable/disable them, and (2) up-
date decoy accounts periodically against potential evasion.
5. Prototype

To demonstrate the efficacy of HoneyIM, we have built a
prototype of the serverless HoneyIM, which can be easily
transformed to the server-enhanced HoneyIM prototype
with minor changes in function location and system initial-
ization. We implement the HoneyIM modules using differ-
ent techniques. We use a full-fledged open-source IM
client Pidgin (formerly known as Gaim) [19] to build
the communication module. The detection module em-
ploys Capture [20], a high interaction client honeypot
on Windows systems, for URL deep-inspection. The detec-
tion module extracts URLs from the communication mod-
ule and feeds them into Capture, which decides
whether a URL is malicious by comparing the system states
such as registry and running processes before and after the
URL is accessed. For any file transfer request HoneyIM does
not perform deep-inspection but immediately fires an alert
instead, given that the file transfer method is relatively
unpopular in IM malware spreading and most IM users
and programs are vigilant to this type of threat. HoneyIM
receives the delivered file and sends it to network admin-
istrators via email. In the construction of the suppression
module, we use Perl IPQueue module for iptables [46] to
perform URL logging and pattern-matching. We imple-
ment the notification module with two communication
means: email and SMS. The suppression module communi-
cates with the detection module via network socket, and
thus can be deployed on a separate machine.

Because Pidgin supports multi-protocol and multi-
account, HoneyIM can log into multiple accounts on multi-
ple IM networks simultaneously. Therefore, it can provide
protection for multiple public IM networks. Note that the
choice of Pidgin and Capture is mainly due to the avail-
ability of their source code. Upon the accessibility of source
code, any IM clients or anomaly detection systems can be
used to construct HoneyIM.
6. Evaluation

In this section, we first evaluate the detection sensitiv-
ity of HoneyIM under different coverage settings via simu-
lation. Then, we validate the applicability of HoneyIM
through real experiments.

6.1. Simulation

When adding decoy accounts is voluntary for IM users on
the protected network, it is very possible that HoneyIM does

M. Xie et al. / Computer Networks 56 (2012) 448–461 457
not cover all IM users. Under this circumstance, how effec-
tive would HoneyIM be? Because we cannot carry out a
large-scale experiment in practice, we turn to simulation
for answering this question. We adopt the simulation model
from [47] due to the similarity in propagation between IM
malware and Email worms [47]. The major metric we use
is the percentage of IM users being infected by the time
the IM malware is firstly detected by HoneyIM (the percent-
age of infected IM users for short), and we investigate its
variation under different HoneyIM coverage configurations.
6.1.1. Simulation model
The simulation model of IM malware propagation is de-

scribed as follows. First, when an IM user receives an IM
message, she may or may not read the message immedi-
ately. The reading delay for user i, denoted by Ti, is a sto-
chastic variable. When the user receives a message with
a malicious URL,5 she clicks the URL with a clicking proba-
bility denoted as Ci. We assume that Ci is a constant for user
i. If the malicious URL is clicked, the malicious code is down-
loaded and executed immediately. It infects the current IM
client and sends malicious URLs to all the victim’s contacts
with no delay. The malware will not spread again unless
the user receives the same URL and clicks it again.

Before we start the simulation, we need to determine
the IM network topology and the values of each Ci and Ti.
Here the IM network refers to the virtual network com-
posed by the contact lists of the IM users on the protected
network. According to [29] that studies an IM network
containing 50,158 users, over 80% of the user contacts
are bidirectional, indicating that most of users are also in
the contact lists of their buddies. Thus, we model the IM
network topology by an undirected graph G = hV,Ei. For
"v 2 V, v denotes a node (IM user), and for "e = (u,v) 2 E,
u, v 2 V, e represents an edge that connects two users, u
and v, who are in each other’s contact list. jVj is the total
number of nodes, and D(i) is the degree of node i, i.e., the
number of edges connected to node i. The size distribution
of contact lists has been identified as scale-free by
[28,29,18], except that [26] claims that Weibull distribu-
tion has a better fit. However, [26] does not give the
parameters of Weibull distribution and the number of their
monitored IM users is small compared to [28,29,18].
Therefore, we model the IM network topology as power
law and set the power law exponent a to 1.7, based on
the measurement results from [28, 29]. The network is
generated by using GLP power law generator [48] with
the given a, the number of nodes jVj, and the average node
degree E[D]. We generate three IM networks with 200,
1000, and 5000 nodes to study the effectiveness of Honey-
IM within small, medium, and large enterprise networks,
respectively. The average node degree E[D] is 20 for all
three networks. The maximum node degrees of the gener-
ated networks are all below 600, the maximum size of a
contact list for MSN.

Similar to [47], we assume that IM users have indepen-
dent behaviors. Due to the large number of users jVj and
independent behaviors, the mean values of user reading
5 The situation for malicious file transfer is similar.
delay Ti and clicking probability Ci, denoted by E[Ti] and
E[Ci](i = 1,2, . . . , jVj), can be assumed to follow Gaussian dis-
tribution. That is, E½Ti� � N lT ;r2

T

� �
and E½Ci� � N lC ;r2

C

� �
.

We also assume that Ti follows exponential distribution
and Ci is a constant for user i, and the generation of Ti

and Ci is constrained by Ti P 0 and Ci 2 [0,1]. In simulation,
we use N(20,102) and N(0.5,0.32) to generate E[Ti] and
E[Ci], respectively.

6.1.2. Simulation results
Given the network topology, we randomly deploy de-

coys in the network with different coverage R and run sim-
ulation experiments. Each simulation run stops once IM
malware hits a decoy user (blocking is in effect immedi-
ately) or timeout occurs. The number of infected users
and detection time are the simulation output. For each cov-
erage R, we vary the decoy deployment 10 times and run
simulation 100 times for each deployment, and have the
mean and median values derived from these 1,000 simula-
tion experiments.

With the increase of HoneyIM coverage, the corre-
sponding percentages of infected IM users on three differ-
ent IM networks are shown in Fig. 8, in which the solid
curves are for mean values and the dashed curves are for
median values. The mean curves are above the median
curves for very small coverage values, and both types of
curves drop sharply and converge to zero with the increase
of coverage. This clearly demonstrates the effectiveness of
HoneyIM. From the figure, we can see that when a decoy
account is deployed on 10% of all IM users, on average,
HoneyIM can detect IM malware with around 5% of users
(10 users) being infected for the small network, and 1%
and 0.2% of users being infected for the medium and large
networks respectively.

As IM throttling [18] is an important technique for cur-
tailing the spread of IM malware, we are interested in the
performance comparison between HoneyIM and IM throt-
tling. The throttling of IM malware is generally conducted
on IM servers. We use the ‘‘no-delay’’ mode of IM throttling
and configure the working set size and threshold to 5 and
2, respectively, as suggested. Since it is difficult to simulate
the working set for each user at run time, we simplify the
propagation model by (1) randomly determining a node’s
working set between 0 and 5 right before the node is prop-
agating and (2) blocking the node after its propagation (no
matter whether the delay queue is overflowed or not).
Therefore, the maximum number of the nodes that a com-
promised node could infect is its working set size plus 2
(the threshold). Note that this model is conservative com-
pared to the original scheme, as we block an infected node
permanently once it starts spreading.

Fig. 9 shows the performance comparisons between
HoneyIM (coverage R ¼ 10%) and throttling on the three
IM networks. The solid curves represent HoneyIM and
the dotted curves represent throttling. Note that the y-axis
is logarithmic, and the results for throttling are the mean
values for 100 runs. Fig. 9 demonstrates that HoneyIM out-
performs IM throttling in all three network environments
and the superiority of HoneyIM over IM throttling is more
evident for larger networks. The simulation results show
that HoneyIM can detect the spread of IM malware with

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (%

)
|V| = 200, E[D] = 20

Mean
Median

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (%

)

|V| = 1000, E[D] = 20

Mean
Median

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (%

)

|V| = 5000, E[D] = 20

Mean
Median

Fig. 8. HoneyIM coverage settings and their corresponding percentages of infected users.

0 50 100 150 200 250 300
1

10

100

200

Virtual Time (tick)

of

 in
fe

ct
ed

 u
se

rs

|V| = 200, E[D] = 20

HoneyIM
Throttling

0 50 100 150 200 250 300
1

10

100

200

Virtual Time (tick)

of

 in
fe

ct
ed

 u
se

rs

|V| = 1000, E[D] = 20

HoneyIM
Throttling

0 50 100 150 200 250 300
1

10

100

200

Virtual Time (tick)

of

 in
fe

ct
ed

 u
se

rs

|V| = 5000, E[D] = 20

HoneyIM
Throttling

Fig. 9. Comparisons between HoneyIM and IM throttling.

458 M. Xie et al. / Computer Networks 56 (2012) 448–461
less than 20 victims no matter the network has 200 nodes
or 5,000 nodes, while the number of malware victims un-
der IM throttling is already over 30 for the small network.
More importantly, HoneyIM can accurately detect the mal-
ware and block its spread right after detection, while throt-
tling cannot differentiate malicious traffic from normal
traffic, let alone block them in an effective manner.

6.2. Real experiment

We set up a small testbed comprising three machines.
We use one machine as the IM client and the other two
as HoneyIM and the network gateway. The suppression
module of HoneyIM is deployed on the network gateway.
Both the IM client and HoneyIM run inside virtual ma-
chines for security and ease of experimentation. We first
use real IM malware binaries we have collected to test
HoneyIM by running malware on the IM client machine.
We test Jitux-A [49], Kelvir-F [50], Kelvir-M [51], and
Kelvir-Q [52], respectively, all of which spread through
malicious URL messages on MSN platforms. The URLs for Ji-
tux-A and Kelvir-F lead to .exe and .scr file downloading,
while the URLs for Kelvir-M and Kelvir-Q point to .php
scripts which also harvest victim’s email addresses. Unfor-
tunately, due to the legal reaction taken by the IM provid-
ers and security community, the webpages pointed by
these known malicious URLs are either invalid or have
been removed by the hosting websites.6 The URL message
6 This situation also applies to other known IM malware.
sent by Kelvir-F is not even received by HoneyIM, because
of the filtering in MSN servers. No detailed information
about IM malware is given by deep-inspection. Thus, we
reconfigure the detection module to skip the deep-inspec-
tion step and rerun the tests. The suppression and notifica-
tion modules work well as expected.

We also test the prototype using a generic approach
which overcomes the difficulty caused by the invalidity
of the known malicious URLs. We mimic IM malware by
sending malicious URLs collected by ourselves to decoy ac-
counts. The malicious URLs we used, in principle, have no
difference from those carried by known IM malware in
terms of Web exploits. Thus, they should have the same ef-
fect on normal IM clients and HoneyIM. The URL process
time of HoneyIM is mainly determined by deep-inspection,
which is usually finished within 30 s. Overall, HoneyIM
successfully detects all malicious URLs, updates the URL
blacklist, and sends the attack information to the desig-
nated recipient via SMS and email. For emulated malicious
file transfers, HoneyIM automatically receives files, reveals
file names to the suppression module, and sends file pay-
loads to the designated recipient via email. The whole pro-
cess takes seconds to complete, since no deep-inspection is
performed for file transfer.

7. Discussion

In previous sections, we assume that IM malware al-
ways attempts to infect all online contacts by either initi-
ating a file transfer or sending a malicious URL during its

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (%
)

|V| = 200, E[D] = 20

Pr = 1
Pr = 0.5
Pr = 0.25

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (%
)

|V| = 1000, E[D] = 20

Pr = 1
Pr = 0.5
Pr = 0.25

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (%
)

|V| = 5000, E[D] = 20

Pr = 1
Pr = 0.5
Pr = 0.25

Fig. 10. Effects of randomly selecting infection targets on HoneyIM.

M. Xie et al. / Computer Networks 56 (2012) 448–461 459
spread. This hit-all propagation strategy, however, might
not always be used. For example, ‘‘smart’’ IM malware
may send malicious URLs or files only to the active online
contacts, i.e., those contacts that the infected IM client is
talking to; or the propagation is activated only after the in-
fected client receives a message. Taking the non-hit-all
strategy, IM malware might not hit the decoy contact even
if the contact list of the infected IM user includes the decoy
accounts.

IM malware can realize the non-hit-all propagation
strategy by either intentionally or randomly selecting a
part of all online contacts as targets. To prevent decoys
from being easily distinguished, we can enhance HoneyIM
with interaction functionality. As a countermeasure, Hon-
eyIM uses the interaction functionality to mimic human
users for decoys by initiating chat sessions with normal
users, making it much harder for IM malware to tell decoys
from others. The chat content can be important security
notices or other user interested information. We readily
agree that IM malware can still avoid decoy contacts even
with the interaction functionality, for example, by infect-
ing the most active contacts. However, the spread of this
type of IM malware could be significantly reduced. Accord-
ing to a recent IM traffic measurement [26], IM users only
contact a small portion of users in their contact lists. On
average an AIM user chats with only 1.9 users and an
MSN user chats with 5.5 users.

The random selection of infection targets may also help
IM malware bypass decoy contacts. To study the effect of
the random selection on HoneyIM, we conduct the follow-
ing experiments based on the previous simulation for Hon-
eyIM. We apply a probabilistic propagation strategy to the
experiments. That is, when IM malware propagates, it will
send malicious content to each contact with a probability
p. With the probabilistic infection, the number of users that
malware will contact becomes p � n on average, where n is
the total number of the online contacts of the infected user.

We test and compare the effects of random target selec-
tion on HoneyIM with three different probabilities p = 1,
0.5, 0.25 on the three IM networks, respectively. Here
p = 1 refers to the aforementioned deterministic infection.
The comparison is displayed in Fig. 10, in which the curve
of p = 0.5 is above the curve of p = 1 but below the curve of
p = 0.25. Fig. 10 depicts that the average number of in-
fected users increases with the decrease of the probability
value, indicating the elusiveness of the probabilistic prop-
agation strategy. However, the figure also shows that the
differences among three curves shrink quickly with the in-
crease of coverage for all three networks. The effect of the
random target selection becomes insignificant and even
negligible when HoneyIM coverage is high.
8. Conclusion

In this paper we have proposed HoneyIM, a novel detec-
tion and suppression mechanism to defend against IM mal-
ware for enterprise-like networks. Distinct from all
previous defense schemes, HoneyIM introduces decoy
users for IM malware detection. It exploits the basic
spreading characteristics of IM malware and guarantees al-
most zero false positive. With accurate detection, the sup-
pression of HoneyIM achieves instant network-wide
blocking. Moreover, HoneyIM notifies network administra-
tors of the infected machines and the infection features of
IM malware in real-time. The generic design of HoneyIM
enables its flexible realization on a network that uses
either enterprise IM services or public IM services. We
have built a prototype of HoneyIM that works with public
IM services using open-source IM client Pidgin and client
honeypot Capture. The simulation studies demonstrate
that even with a small portion of IM users equipped with
decoy accounts, HoneyIM can still detect and block IM
malware in the early stage of its spread. The real experi-
ments on the prototype further demonstrate that HoneyIM
is competently capable of detecting and suppressing the
spread of IM malware.
Acknowledgments

This work was partially supported by NSF Grants CNS-
0627339 and ECCS-0901537.
References

[1] M. Xie, Z. Wu, H. Wang, Honeyim: Fast detection and suppression of
instant messaging malware in enterprise-like networks, in:
Proceedings of ACSAC 2007, Miami Beach, FL, December 2007.

[2] Radicati, Instant messaging market, 2009-2013, <http://www.
radicati.com/?p=4654>, 2009 (accessed 18.11.2010).

[3] Symantec, W32.bropia, <http://www.symantec.com/security_
response/writeup.jsp?docid=2005-012013-2855-99>, (accessed
18.11.2010).

http://www.radicati.com/?p=4654
http://www.radicati.com/?p=4654
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012013-2855-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012013-2855-99

460 M. Xie et al. / Computer Networks 56 (2012) 448–461
[4] Symantec, W32.opanki, <http://www.symantec.com/security_
response/writeup.jsp?docid=2005-051810-1834-99>, (accessed
18.11.2010).

[5] J. Scarrow, Security alert: Active links in messenger 2009
temporarily turned off to prevent a malicious worm, <http://
windowsteamblog.com/windows_live/b/windowslive/archive/2010/
11/12/security-alert-active-links-in-messenger-2009-temporarily-
turned-off-to-prevent-a-malicious-worm.aspx>, 2010 (accessed
18.11.2010).

[6] IBM, Lotus Sametime, <http://www-01.ibm.com/software/lotus/
sametime/> (accessed 18.11.2010).

[7] Microsoft, Microsoft lync server, <http://lync.microsoft.com/en-us/
Pages/default.aspx> (accessed 18.11.2010).

[8] M. Hicks, Reuters suspends im service due to kelvir worm, <http://
www.eweek.com/c/a/Messaging-and-Collaboration/Reuters-Suspends-
IM-Service-Due-to-Kelvir-Worm/>, 2005 (accessed 18.11.2010).

[9] Norman, Norman sandbox whitepaper, <http://download.norman.
no/whitepapers/whitepaper_Norman_SandBox.pdf> (accessed
18.11.2010).

[10] Google, Google safe browsing api, <http://code.google.com/apis/
safebrowsing/> (accessed 25.11.2010).

[11] SURBL, <http://www.surbl.org/> (accessed 25.11.2010).
[12] URIBL, Realtime URI blacklist, <http://www.uribl.com/> (accessed

25.11.2010).
[13] S. Antonatos, I. Polakis, T. Petsas, E.P. Markatos, A systematic

characterization of IM threats using honeypots, in: Proceedings of
the 17th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2010.

[14] R. Schouwenberg, Do you like photos?’’ <http://www.securelist.com/
en/weblog?weblogid=199354341>, 2006 (accessed 18.11.2010).

[15] R. Schouwenberg, MSN filter bypassing – part 2, <http://www.
securelist.com/en/weblog?weblogid=199850358>, 2006 (accessed
18.11.2010).

[16] C. Raiu, The IM worms armada, <http://www.securelist.com/en/
weblog?weblogid=203678309>, 2006 (accessed 18.11.2010).

[17] M. Mannan, P.C. van Oorschot, On instant messaging worms,
analysis and countermeasures, in: Proceedings of WORM 2005,
2005, pp. 2–11.

[18] M.M. Williamson, A. Parry, A. Byde, Virus Throttling for Instant
Messaging, HP Lab Bristol, Technical Report, May 2004.

[19] Pidgin, the universal chat client, http://pidgin.im/ (accessed
18.11.2010).

[20] R. Steenson, C. Seifert, Capture: A high interaction client honeypot,
<https://projects.honeynet.org/capture-hpc> (accessed 18.11.2010).

[21] R. Schouwenberg, Kelvir changes its approach, <http://www.
securelist.com/en/weblog?weblogid=162243612>, 2005 (accessed
18.11.2010).

[22] A. Gostev, Social engineering: the latest chapter, <http://www.
securelist.com/en/weblog?weblogid=168136245>, 2005 (accessed
18.11.2010).

[23] N. Hindocha, E. Chien, Malicious threats and vulnerabilities in
instant messaging, <http://www.symantec.com/avcenter/reference/
malicious.threats.instant.messaging.pdf>, 2003 (accessed 18.11.
2010).

[24] M. Mannan, P.C. van Oorschot, Secure public instant messaging: A
survey, in: Proceedings of the 2nd Annual Conference on Privacy,
Security, and Trust, 2004, pp. 69–77.

[25] D. Avrahami, S.E. Hudson, Communication characteristics of instant
messaging: effects and predictions of interpersonal relationships, in:
Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work (CSCW ’06), 2006, pp. 505–514.

[26] Z. Xiao, L. Guo, J. Tracey, Understanding instant messaging traffic
characteristics, in: Proceedings of the 27th ICDCS, Toronto, Canada,
2007.

[27] J. Leskovec, E. Horvitz, Planetary-scale views on a large instant-
messaging network, in: Proceeding of the 17th International
Conference on World Wide Web (WWW ’08), 2008, pp. 915–924.

[28] C.D. Morse, H. Wang, The structure of an instant messenger network
and its vulnerability to malicious codes, in: Proceedings of ACM
SIGCOMM 2005 Poster Session, Philadelphia, PA, 2005.

[29] R.D. Smith, Instant Messaging as a Scale-Free Network, http://
arxiv.org/abs/cond-mat/0206378v2, 2002 (accessed 18.11.2010).

[30] Z. Liu, G. Shu, N. Li, D. Lee, Defending against instant messaging
worms, in: Proceedings of IEEE GLOBECOM 2006, San Francisco, CA,
2006, pp. 1–6.
[31] Z. Liu, D. Lee, Coping with instant messaging worms – statistical
modeling and analysis, in: Proceedings of the 15th IEEE Workshop
on Local and Metropolitan Area Networks, Princeton, NJ, 2007.

[32] The Honeynet Project, Know Your Enemy: Learning about
Security Threats (2nd Edition). Addison-Wesley Professional,
May 2004.

[33] N. Provos, T. Holz, Virtual Honeypots: From Botnet Tracking to
Intrusion Detection, Addison-Wesley Professional, 2007.

[34] C. Seifert, I. Welch, P. Komisarczuk, Taxonomy of honeypots, <http://
www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-12.abs.html>,
Victoria University of Wellington, Technical Report, 2006, (accessed
18.11.2010).

[35] K. Wang, Using honeyclients to detect new attacks, <www.
synacklabs.net/honeyclient/Wang-Honeyclients-RECON.pdf>, 2005
(accessed 18.11.2010).

[36] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, S.
King, Automated web patrol with strider honeymonkeys: Finding
web sites that exploit browser vulnerabilities, in: Proceedings of the
13th NDSS, San Diego, CA, Feb. 2006.

[37] C. Seifert, I. Welch, P. Komisarczuk, Honeyc - the low interaction
client honeypot/honeyclient, https://projects.honeynet.org/honeyc
(accessed 18.11.2010).

[38] J. Nazario, Phoneyc: A virtual client honeypot, in: Proceeding of the
2nd USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET ’09), 2009.

[39] A.J. Trivedi, P.Q. Judge, S. Krasser, Analyzing network and content
characteristics of spim using honeypots, in: Proceedings of the 3rd
USENIX SRUTI, Santa Clara, CA, 2007.

[40] G. Yan, Z. Xiao, S. Eidenbenz, Catching instant messaging worms
with change-point detection techniques, in: Proceedings of the 1st
Usenix Workshop on Large-Scale Exploits and Emergent Threats
(LEET), San Francisco, CA, 2008.

[41] Autoit, http://www.autoitscript.com/, (accessed 18.11.2010).
[42] J. Newsome, D. Song, Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity
software, in: Proceedings of the 12th NDSS, San Diego, CA, 2005.

[43] G. Portokalidis, A. Slowinska, H. Bos, Argos: an emulator for
fingerprinting zeroday attacks, in: Proceedings of the EUROSYS
2006, Leuven, Belgium, 2006.

[44] International Secure Systems Lab, Anubis: Analyzing unknown
binaries, http://analysis.iseclab.org/ (accessed 25.11.2010).

[45] Virustotal, <http://www.virustotal.com/> (accessed 25.11.2010).
[46] Netfilter, iptables project, <http://www.netfilter.org/projects/

iptables/> (accessed 18.11.2010).
[47] C.C. Zou, D. Towsley, W. Gong, Modeling and simulation study of

the propagation and defense of internet email worm, IEEE
Transactions on Dependable and Secure Computing 4 (2) (2007)
105–118.

[48] T. Bu, D. Towsley, On distinguishing between internet power law
topology generators, in: Proceedings of the 2002 IEEE INFOCOM,
New York, NY, 2002, pp. 638–647.

[49] Sophos, W32/Jitux-A, <http://www.sophos.com/security/analyses/
viruses-and-spyware/w32jituxa.html> (accessed 18.11.2010).

[50] Sophos, W32/Kelvir-F, <http://www.sophos.com/security/analyses/
viruses-and-spyware/w32kelvirf.html> (accessed 18.11.2010).

[51] Sophos, Troj/Kelvir-M, <http://www.sophos.com/security/analyses/
viruses-and-spyware/trojkelvirm.html> (accessed 18.11.2010).

[52] Sophos, W32/Kelvir-Q, <http://www.sophos.com/security/analyses/
viruses-and-spyware/w32kelvirq.html> (accessed 18.11.2010).

Mengjun Xie received the Ph.D. degree in
Computer Science from College of William
and Mary, Williamsburg, in 2009. He is an
Assistant Professor of Computer Science at
University of Arkansas at Little Rock, Little
Rock. His research interests include network
security, information security, network sys-
tems, and operating systems.

http://www.symantec.com/security_response/writeup.jsp?docid=2005-051810-1834-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-051810-1834-99
http://windowsteamblog.com/windows_live/b/windowslive/archive/2010/11/12/security-alert-active-links-in-messenger-2009-temporarily-turned-off-to-prevent-a-malicious-worm.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2010/11/12/security-alert-active-links-in-messenger-2009-temporarily-turned-off-to-prevent-a-malicious-worm.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2010/11/12/security-alert-active-links-in-messenger-2009-temporarily-turned-off-to-prevent-a-malicious-worm.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2010/11/12/security-alert-active-links-in-messenger-2009-temporarily-turned-off-to-prevent-a-malicious-worm.aspx
http://www-01.ibm.com/software/lotus/sametime/
http://www-01.ibm.com/software/lotus/sametime/
http://lync.microsoft.com/en-us/Pages/default.aspx
http://lync.microsoft.com/en-us/Pages/default.aspx
http://www.eweek.com/c/a/Messaging-and-Collaboration/Reuters-Suspends-IM-Service-Due-to-Kelvir-Worm/
http://www.eweek.com/c/a/Messaging-and-Collaboration/Reuters-Suspends-IM-Service-Due-to-Kelvir-Worm/
http://www.eweek.com/c/a/Messaging-and-Collaboration/Reuters-Suspends-IM-Service-Due-to-Kelvir-Worm/
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/
http://www.surbl.org/
http://www.uribl.com/
http://www.securelist.com/en/weblog?weblogid=199354341
http://www.securelist.com/en/weblog?weblogid=199354341
http://www.securelist.com/en/weblog?weblogid=199850358
http://www.securelist.com/en/weblog?weblogid=199850358
http://www.securelist.com/en/weblog?weblogid=203678309
http://www.securelist.com/en/weblog?weblogid=203678309
http://https://projects.honeynet.org/capture-hpc
http://www.securelist.com/en/weblog?weblogid=162243612
http://www.securelist.com/en/weblog?weblogid=162243612
http://www.securelist.com/en/weblog?weblogid=168136245
http://www.securelist.com/en/weblog?weblogid=168136245
http://www.symantec.com/avcenter/reference/malicious.threats.instant.messaging.pdf
http://www.symantec.com/avcenter/reference/malicious.threats.instant.messaging.pdf
http://arxiv.org/abs/cond-mat/0206378v2
http://arxiv.org/abs/cond-mat/0206378v2
http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-12.abs.html
http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-12.abs.html
http://www.synacklabs.net/honeyclient/Wang-Honeyclients-RECON.pdf
http://www.synacklabs.net/honeyclient/Wang-Honeyclients-RECON.pdf
http://https://projects.honeynet.org/honeyc
http://www.autoitscript.com/
http://analysis.iseclab.org/
http://www.virustotal.com/
http://www.netfilter.org/projects/iptables/
http://www.netfilter.org/projects/iptables/
http://www.sophos.com/security/analyses/viruses-and-spyware/w32jituxa.html
http://www.sophos.com/security/analyses/viruses-and-spyware/w32jituxa.html
http://www.sophos.com/security/analyses/viruses-and-spyware/w32kelvirf.html
http://www.sophos.com/security/analyses/viruses-and-spyware/w32kelvirf.html
http://www.sophos.com/security/analyses/viruses-and-spyware/trojkelvirm.html
http://www.sophos.com/security/analyses/viruses-and-spyware/trojkelvirm.html
http://www.sophos.com/security/analyses/viruses-and-spyware/w32kelvirq.html
http://www.sophos.com/security/analyses/viruses-and-spyware/w32kelvirq.html

M. Xie et al. / Computer Networks 56 (2012) 448–461 461
Zhenyu Wu received his M.Sc. degree in
Computer Science from the College of William
and Mary in 2005. He is currently a Ph.D.
candidate in Computer Science at the College
of William and Mary. His current research
area focuses on data center resource man-
agement and network optimization. His
research interest also lies in system and net-
work security, including but not limited to
malware analysis, packet filters, and Internet
chat and online game security.
Haining Wang received his Ph.D. in Computer
Science and Engineering from the University
of Michigan at Ann Arbor in 2003. He is an
Associate Professor of Computer Science at
the College of William and Mary, Williams-
burg, VA. His research interests lie in the area
of security, networking systems, and distrib-
uted computing. He is a senior member of
IEEE.

	Secure instant messaging in enterprise-like networks
	1 Introduction
	2 Background and related work
	2.1 IM malware
	2.2 Related work

	3 Measurement
	4 HoneyIM framework
	4.1 Overview
	4.2 Design issues
	4.3 System components
	4.3.1 Communication module
	4.3.2 Detection module
	4.3.3 Suppression module
	4.3.4 Notification module

	4.4 Deployment

	5 Prototype
	6 Evaluation
	6.1 Simulation
	6.1.1 Simulation model
	6.1.2 Simulation results

	6.2 Real experiment

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

