
Secure Intelligence Gathering Using Smartphones

Doug Serfass

Department of Computer Science

University of Arkansas at Little Rock

Little Rock, AR, USA

djserfass@ualr.edu

Mengjun Xie

Department of Computer Science

University of Arkansas at Little Rock

Little Rock, AR, USA

mxxie@ualr.edu

Abstract—Equipped with camera, microphone, GPS and other

sensors, together with convenient applications such as email

clients, smartphones have a high potential to become a cost-

effective intelligence gathering platform in a war zone. However,

current smartphone applications are developed for civilian use.

Due to lack of support for military requirements, such as

confidentiality, smartphones may not be directly adopted in

military environments. To bridge the gap, we propose a new

model for secure intelligence gathering using smartphones. Based

on the Android operating system, we develop Imsec, a proof-of-

concept application which can securely capture, store, and

transfer camera-generated images using smartphones. Our

evaluation results demonstrate the feasibility and effectiveness of

this new model.

Encryption; Military computing; Mobile computing;

Programming; Electronic mail

I. INTRODUCTION

A soldier on an urban battlefield is using his smartphone to
take pictures of enemy locations. After his patrol, he has access
to Wi-Fi and uses this opportunity to email his pictures to an
officer in his company. Unknown to the soldier or the officer,
the pictures are intercepted by a hacker who is contracted by
the enemy to monitor local internet traffic. The hacker sends
the pictures to the enemy. The enemy uses this intelligence to
vacate the locations in the pictures. Could this network security
breach have been prevented while still allowing the soldier to
use his smartphone as an intelligence gathering tool? Yes. We
propose a model that will defend against smartphone image
attacks and implement this model on an Android smartphone.
This paper consists of the following sections: Section II
discusses recent related work on smartphone image security.
Section III describes potential attacks against smartphone
images. Section IV proposes defenses against these attacks.
Section V describes a model based on our defense proposals.
Section VI shows Java code for Imsec (Image security), an
Android application based on our model. Section VII discusses
the results of our study. Section VIII is our conclusions and
suggestions for future research.

II. RELATED WORK

Nanjunda et al. [1] proposed opportunistic encryption as a
method to optimize the tradeoff between cipher security and
throughput loss. Their results showed that applying
opportunistic encryption on JPEG compressed images resulted
in an improved quality of received images and improved

security compared to fixed block length encryption. Kovacevic
et al. [2] describe the implementation of a system for secure
data transfer in telemedicine applications based on a public key
infrastructure. They conclude that, although their system
focused on medical image transport, it can be modified to
support secure transport of other data types. Shankar et al. [3]
and Zhang et al. [4] introduced new encryption algorithms
specifically designed for smartphones. Both studies conclude
that their new encryption algorithms meet the unique
requirements of small computing devices.

III. SMARTPHONE IMAGE ATTACKS

Attacks against smartphone images take place in three
distinct locations: the smartphone itself; during transport
between the smartphone and the server; and at the server. We
discuss four attacks that take place at these locations.

A. Image Compromised on Smartphone

Smartphone is stolen and rooted. By combining a rooted
Android smartphone with the Android Debug Bridge, an
attacker gains complete access to the Linux file system on the
smartphone. This access includes any camera-generated image
stored on the smartphone. We used a rooted Android
smartphone for application development.

B. Image Intercepted Enroute To (or From) Server

Any Internet traffic is subject to a Man-In-The-Middle
(MITM) [5] attack. Regardless of the transport protocol used,
any smartphone image transiting between smartphone and
server is open to this exploit.

C. Password and Salt Compromised on Smartphone

Password and salt embedded in a file or Java class file on
the smartphone. Smartphone is stolen and rooted. File is read or
Java class is decompiled. Encrypted images stored on all
smartphones for all users compromised. Independent of an
attack, this is also an improper method for password and salt
storage. Any change to the password and salt would require
download of a new file or reinstallation of the application. It is
also weak security to have one password and salt for all users.

D. Server Database Login Name and Password Obtained

Smartphone images, user passwords and user salts stored on
a server database. Server database login name and password
obtained. User passwords and salts obtained. Encrypted

978-1-4673-1375-9/12/$31.00 ©2012 IEEE

smartphone images on the server database for all users
compromised. The main security flaw leveraged in this exploit
is that encrypted smartphone images, user passwords and user
salts are all stored together in one location on a server database.

IV. SMARTPHONE IMAGE DEFENSES

Below are the corresponding defenses against the attacks
listed in the previous section.

A. Encrypt Image Stored on Smartphone

Encrypted images stored in a file or database on a
smartphone cannot be compromised without also obtaining the
user password and salt used for encryption. Only unencrypted
information will be available to an attacker who steals and
roots a smartphone.

B. Encrypt Image Before Routing To (or From) Server

Encrypted images intercepted during an MITM attack
cannot be compromised without also obtaining the user
password and salt used for encryption. Only unencrypted
information will be available to an attacker who executes an
MITM attack.

C. Password and Salt on Server Database

Obtain a user-entered password and salt over HTTPS from
a server database. User can login at any time to a web
application over HTTPS and modify his password and salt. If
required, all distinct smartphone images can each be encrypted
with a unique, user-specified, password and salt.

D. (Password, Salt), (Address, Password) on Two Databases

User (password, salt) and email (address, password) stored
on two distinct server databases. Encrypted smartphone images
stored as email message attachments in user inbox on a mail
server. A successful attack would first require obtaining two
database login names and passwords. Second, an attacker
would also need to obtain encrypted smartphone images from a
mail server.

V. DEFENSE-BASED MODEL

Based on our defense proposals, we create a model for
secure intelligence gathering using smartphones. Our model is
shown in Fig. 1.

Encrypted Image = Camera + HTTPS (Password, Salt, PasswordSalt_id)

Write Encrypted Image, PasswordSalt_id to Smartphone Database

Email Image = Wi-Fi+HTTPS (Email Address,Image_id,PasswordSalt_id)

Encrypted Image Stored on Mail Server

Download Image = Wi-Fi+HTTPS (Addr,Pwd,Image_id,PasswordSalt_id)

Write Encrypted Image, PasswordSalt_id to Smartphone Database

Decrypted Image = Read Database + HTTPS (Password, Salt)

Display Decrypted Image

Figure 1. Defense-based model.

This model describes the journey of an encrypted image
from a smartphone to a mail server to a second smartphone.
The user of the first smartphone (where the picture is taken)
might be a soldier. The user of the second smartphone might be
an intelligence officer charged with reviewing the decrypted
images. An addition to the model would provide the
intelligence officer with a computer-based interface for
viewing decrypted images.

VI. IMSEC JAVA CODE

We present relevant Java code snippets developed for
Imsec as we implemented our defense-based model. This code
is not intended as a tutorial for creating an Android application.
For information on this topic, the reader is directed to the
Android Developers web site. All Java classes discussed in this
section are documented in Oracle or Android Javadocs.

A. Permissions

Android application permissions are set in the
AndroidManifest.xml file. Imsec required the entries as shown
in Fig. 2.

<"android.permission.INTERNET"/>

<"android.permission.WRITE_EXTERNAL_STORAGE"/>

<"android.permission.CAMERA"/>

Figure 2. Imsec permissions.

Internet allows Imsec to open network sockets and is
required for email. Write external storage allows Imsec to read
and write to external storage (files). Camera allows Imsec to be
able to access the camera device.

B. Get Image During Application Development

The image is delivered from the camera to Imsec as an
instance of the class android.graphics.Bitmap. The camera is
not available from the Android emulator during application
development. We used the class
com.tomgibara.android.camera.HttpCamera [6] to get an image
during application development as shown in Fig. 3.

u = new

URL("http://www.birdhousesbymark.com/images/chickadee

.jpg");

h = (HttpURLConnection) u.openConnection();

h.setAllowUserInteraction(false);

h.setConnectTimeout(CONNECT_TIMEOUT);

h.setReadTimeout(SOCKET_TIMEOUT);

h.setInstanceFollowRedirects(true);

h.setRequestMethod("GET");

h.connect();

r = h.getResponseCode();

if(r == HttpURLConnection.HTTP_OK){

in = h.getInputStream();

bitmap = BitmapFactory.decodeStream(in);}

Figure 3. Java code to get an image during application development.

C. Get Image on Smartphone

The Java code to get an image on the smartphone is shown
in Fig. 4.

String s =

Environment.getExternalStorageDirectory().getAbsolute

Path() + "/imsec.jpg";

f = new File(s);

Uri u = Uri.fromFile(f);

i = new

Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTU

RE);

i.putExtra(android.provider.MediaStore.EXTRA_OUTPU

T, u);

startActivityForResult(i, 0);

BitmapFactory.Options o = new

BitmapFactory.Options();

o.inSampleSize = 4;

bitmap = BitmapFactory.decodeFile(s,o);

f.delete();

Figure 4. Java code to get an image on the smartphone.

android.content.Intent is an abstract description of an
operation to be performed. In this case, the operation is to
capture an image from the camera. The startActivityForResult
method is used to get a result back from an activity when it
ends. The result of this method is that the camera image is
written to the file imsec.jpg after the picture is taken. The field
inSampleSize requests the decoder to subsample the original
image, returning a smaller image to save memory. Setting this
field to 4 returns an image that is 1/4 the width/height of the
original, and 1/16 the number of pixels. Not setting this field
caused an application out of memory exception.

D. Encryption

The encryption Java code is shown in Fig. 5.

pps = new PBEParameterSpec(salt, iterationCount);

pks = new PBEKeySpec(password);

skf =

SecretKeyFactory.getInstance("PBEWithMD5AndDES");

SecretKey sk = skf.generateSecret(pks);

Cipher ec =

Cipher.getInstance("DES/CFB8/NoPadding");

ec.init(Cipher.ENCRYPT_MODE, sk, pps);

FileOutputStream fos =

context.openFileOutput("imsec.tmp",

Context.MODE_PRIVATE);

cos = new CipherOutputStream(fos, ec);

bitmap.compress(Bitmap.CompressFormat.JPEG, 5,

cos);

Figure 5. Encryption Java code.

The user logs in to a web application to obtain his salt,
password and PasswordSalt_id over HTTPS. This activity
requires very little traffic and can be conducted over the
smartphone carrier network (i.e., no Wi-Fi). The user is now
ready to use the camera.

javax.crypto.spec.PBEParameterSpec specifies the set of
parameters used with password-based encryption (PBE), as
defined in the PKCS #5 [7] standard.
javax.crypto.spec.PBEKeySpec uses the PBE mechanism
defined in PKCS #5 to consume the lower order 8 bits of each
password character.

javax.crypto.SecretKeyFactory represents a factory for
secret keys. A String with the standard name of the requested
secret-key algorithm is passed to the getInstance method. The
Java Cryptography Architecture [8] provides information
about standard secret-key algorithm names. The method
returns a SecretKeyFactory object for the specified secret-key
algorithm.

The PBEKeySpec is passed to the generateSecret method.
The method returns a SecretKey object from the provided key
specification.

javax.crypto.Cipher provides the functionality of a
cryptographic cipher for encryption and decryption. It forms
the core of the Java Cryptographic Extension (JCE)
framework. A String with the name of the transormation is
passed to the getInstance method. The method returns a Cipher
object that implements the requested transformation. The
Cipher init method initializes the cipher for encryption.

android.content.Context is an abstract class whose
implementation is provided by the Android system. It is an
interface to global information about an application
environment. The Context implementation class
openFileOutput method is used to instantiate a
java.io.FileOutputStream object and to open the file imsec.tmp
for writing. The file creation mode MODE_PRIVATE
specifies that the file imsec.tmp can only be accessed by the
calling application (i.e., Imsec).

javax.crypto.CipherOutputStream is composed of the
FileOutputStream and Cipher objects so that write methods
first process data (i.e., encrypt it) before writing the data to the
underlying FileOutputStream. This activity takes place when
the android.graphics.Bitmap compress method is used.

The Bitmap compress method writes a compressed version
of the Bitmap to the FileOutputStream. The first parameter
specifies the format of the compressed image, in this case
JPEG. The second parameter specifies the quality in the range
[0,100] and is a hint to the compressor. 0 means compress for
small size and 100 means compress for maximum quality.

For comparison, a source image [9] is shown in the
Android emulator after encryption and compression (and
subsequent decryption) in Fig. 6 with quality values of 100
(left) and 0 (right).

Figure 6. Quality of 100 and 0.

The quality value could be provided by the user. Selecting
a low quality value would provide an addition to the model
and would permit the user to email the image using the
smartphone carrier network (i.e., no Wi-Fi).

E. Write Encrypted Image to Smartphone Database

After encryption and compression, the file imsec.tmp and
the PasswordSalt_id are written to a SQLite smartphone
database. The Java code for writing the encrypted image to the
smartphone database is shown in Fig. 7.

FileInputStream fis;

fis = context.openFileInput("imsec.tmp");

bis = new BufferedInputStream(fis);

byte[] b = new byte[bis.available()];

bis.read(b);

cv = new ContentValues();

cv.put("name", "image name");

cv.put("passwordsalt_id", ps_id);

cv.put("in_out", "out");

cv.put("sent", "n");

cv.put("file", b);

dh = new DatabaseHelper(context);

SQLiteDatabase sdb;

sdb = dh.getWritableDatabase();

sdb.insert("images", null, cv);

Figure 7. Java code to write encrypted image to smartphone database.

The Context implementation class openFileInput method is
used to instantiate a java.io.FileInputStream object and to open
the file imsec.tmp for reading. java.io.BufferedInputStream
read method is used to read FileInputStream into a byte array.

android.content.ContentValues is a map used to store a set
of values. The put method takes a (key, value) pair and adds the
value to the set. The key is a table column name and the value
is a table column value.

The first put is an image name input by the user. The
second put is the PasswordSalt_id. The third put designates
whether this file is to be sent as an email attachment (out) or
was received from an email attachment (in). The fourth put
gives the sent status of an image (n is not sent, y is sent). The
fifth put is the image now stored in an array of bytes.

DatabaseHelper is an inline class that extends
android.database.sqlite.SQLiteOpenHelper, which is a helper
class used to manage database creation and versioning. The

getWritableDatabase method is used to open a database for
writing and returns an android.database.sqlite.SQLiteDatabase
object.

The SQLiteDatabase insert method inserts a row in the
images database using the ContentValues map.

F. Email Encrypted Image

The Java code for emailing encrypted image(s) is shown in
Fig. 8.

for(int i = 0;i < n;i++){

m = new Mail();

String[] to = {"email address"};

m.setTo(to);

m.setFrom("imsec@ualr.edu");

m.setSubject(image_id[i],passwordsalt_id);

m.setBody("imsec body");

m.addAttachment("imsec.tmp");

m.send();}

Figure 8. Java code to email the encrypted image.

The user waits until he is on a Wi-Fi network to email the
encrypted images. The Wi-Fi network will allow Imsec to
email high quality (and large file size) images in batch mode as
quickly as possible. Note that this activity could be performed
on the smartphone carrier network if the model is extended to
allow the user to select low quality for images.

A query is issued to the smartphone database that returns a
count of the number of unsent encrypted images: SELECT
COUNT(*) AS n FROM images WHERE in_out='out' AND
sent='n'. The user logs in to a web application to obtain his
email address and a block of unique Image_ids (quantity n)
over HTTPS. A unique Image_id will be used for the subject of
every email. This ensures that, for all email addresses and
inboxes, every email subject will uniquely identify one and
only one encrypted image.

edu.ualr.imsec.mail.Mail extends javax.mail.Authenticator
which is a class in javamail-android [10], a JavaMail port for
Android. The setTo method is used to set the user email
address. The setSubject method is used to set the Image_id that
uniquely identifies this encrypted image. The PasswordSalt_id
is read from the smartphone database and is appended to the
subject. The resulting subject is of the form
Image_id,PasswordSalt_id. The encrypted image is read from
the smartphone database (see below) and written to the file
imsec.tmp. The addAttachment method is used to attach the
encrypted image to the email. The send method sends the
email.

After the encrypted images have been emailed, the user
may disconnect from Wi-Fi.

G. Download Encrypted Image

The Java code for downloading the encrypted image from
an email message attachment is shown in Fig. 9.

Store s = session.getStore("imaps");

s.connect("imap.gmail.com","emailaddr","passw");

Folder f = s.getFolder("INBOX");

f.open(Folder.READ_ONLY);

Message[] m = f.getMessages();

for(int k = 0;k < n;k++){

 for(int i = 0;i < m.length;i++){

 String[] subject =

m[i].getSubject().split("\\,");

 if(image_id[k].equals(subject[0])){

 FileOutputStream fos;

 fos = context.openFileOutput("imsec.att");

 Object c = m[i].getContent();

 mp = (Multipart)c;

 for(int j=0;j < mp.getCount();j++){

 Part p = mp.getBodyPart(j);

 byte[] b = new byte[2048];

 InputStream is = p.getInputStream();

 while((int r = is.read(b)) > 0)

 fos.write(b, 0, r);

 //write image, subject[1] to database

}}}}

Figure 9. Java code to download an encrypted image.

The user waits until he is on a Wi-Fi network to download
the encrypted images. The Wi-Fi network will allow Imsec to
download high quality (and large file size) images in batch
mode as quickly as possible. Note that this activity could be
performed on the smartphone carrier network if the model is
extended to allow the user who emailed the encrypted images
to select low quality for images.

The user logs in to a web application to obtain over HTTPS
the email address and password of the user who created and
emailed the encrypted images. The user also selects from a list
of image names in order to obtain over HTTPS a block of
unique Image_ids (quantity n). The email address, password
and Image_ids are then used to download the encrypted
images.

The javax.mail.Store object uses the Internet message
access protocol (IMAP) to connect to the specified address
using a simple authentication scheme that requires the user
email address and password. The Store object instantiates a
javax.mail.Folder object corresponding to the email address
inbox. The Folder object opens in read only mode. The Folder
object uses the getMessages method to get all
javax.mail.Message objects from the Folder object.

The outer for loop with iteration variable k loops over all
keys. The inner for loop with iteration variable i loops over all
Message objects. The split method splits the message subject
into an array where subject[0]=Image_id and
subject[1]=PasswordSalt_id. If the current Image_id matches
subject[0], then the user selected this encrypted image in the

web application and the encrypted image is downloaded to the
file imsec.att. Though not shown, the file imsec.att and the
PasswordSalt_id (subject[1]) would also be written to the
smartphone database with column in_out set to in.

After the selected encrypted images have been downloaded,
the user may disconnect from Wi-Fi.

H. Read Encrypted Image from Smartphone Database

The Java code for reading the encrypted image from the
smartphone database is shown in Fig. 10.

dh = new DatabaseHelper(context);

SQLiteDatabase sdb;

sdb = dh.getReadableDatabase();

Cursor c;

c = sdb.query("images", null, "id=1", null, null,

null, null);

c.moveToNext();

byte[] b = c.getBlob(4);

FileOutputStream fos;

fos = context.openFileOutput("imsec.dbf",

Context.MODE_PRIVATE);

fos.write(b);

Figure 10. Java code to read encrypted image from smartphone database.

The user has downloaded all selected encrypted images and
is ready to view the decrypted images. The first step in this
process is to read the encrypted image from the smartphone
database and write the encrypted image to a file.

The getReadableDatabase method is used to open a
database for reading and returns a SQLiteDatabase object. The
SQLiteDatabase object uses the query method to read the
images table: SELECT * FROM images WHERE id=1. The
query method returns an android.database.Cursor object.

The Cursor object uses the moveToNext method to move to
the next row in the result set. The Cursor object uses the
getBlob method to copy the encrypted image from the fourth
column in the result set to a byte array. The FileOutputStream
object writes the byte array to the file imsec.dbf.

I. Decryption

The Java code for decrypting the encrypted image is shown
in Fig. 11.

Cipher dc =

Cipher.getInstance("DES/CFB8/NoPadding");

dc.init(Cipher.DECRYPT_MODE, sk, pps);

FileInputStream fis;

fis = context.openFileInput("imsec.dbf");

cis = new CipherInputStream(fis, dc);

bitmap = BitmapFactory.decodeStream(cis);

Figure 11. Decryption Java code.

The user logs in to a web application and uses the
PasswordSalt_id to obtain the salt and password (of the user
who created the encrypted images) over HTTPS. The same
Java code that used the password, salt and iterationCount to
prepare to compress and encrypt the bitmap is also used to
decrypt the image to a bitmap. This code is not repeated in Fig.
11.

The Cipher object uses the getInstance method to generate a
second Cipher object that implements the specified
transformation. The Context implementation class
openFileInput method is used to instantiate a
java.io.FileInputStream object and to open the file imsec.dbf
for reading.

 javax.crypto.CipherInputStream is composed of the
FileInputStream and Cipher objects so that read methods first
process data (i.e., decrypt it) before reading the data to the
underlying FileInputStream. This activity takes place when the
android.graphics.BitmapFactory decodeStream method is used.

J. Display Decrypted Image

The Java code for displaying the decrypted image is shown
in Fig. 12.

Rect r1 = new Rect(0, 0, bitmap.getWidth(),

bitmap.getHeight());

Rect r2 = new Rect(r1);

r2.bottom = bitmap.getHeight() * r1.right /

bitmap.getWidth();

r2.offset(0,(r1.bottom – r2.bottom)/2);

canvas.drawBitmap(bitmap, null, r2, paint);

Figure 12. Java code to display decrypted image.

This code preserves the aspect ratio of the image.
android.graphics.Rect creates a new rectangle, r1, where the
width (of the image) is the X coordinate of the right side of the
rectangle and the height (of the image) is the Y coordinate of
the bottom of the rectangle. A second Rect constructor creates
a rectangle, r2, initialized with the values in rectangle r1 (which
is left unmodified). r2.offset offsets r2 by adding 0 to the
rectangle's left and right coordinates and (r1.bottom –
r2.bottom)/2 to the rectangle's top and bottom coordinates.
android.graphics.Canvas uses the drawBitmap method to draw
the specified bitmap, scaling/translating automatically to fill r2.

VII. RESULTS

We have used our Android application to prove that our
model is correct. Our model and our Android application will
defend against all possible smartphone image attacks.

If the smartphone is stolen and rooted, our encryption
software will ensure that images on the smartphone cannot be
viewed. Encryption also defends against the MITM attack
conducted by the fictional hacker in the Introduction.

To defend against the third attack, our model dictates that
the password and salt used for encryption and decryption are
stored on a server database and accessed through a web
application. We did not implement this defense in software.
Android provides the Java classes to create an HTTPS web
application.

Our model defends against the fourth attack by physically
separating user information, for example password and salt,
from encrypted images. User information is stored on database
servers while encrypted images are stored on a mail server. Our
email software has shown a mail server can be used for this
purpose.

VIII. CONCLUSION

Smartphones are an excellent example of Commercially
available Off-The-Shelf (COTS) hardware that can be readily
adapted for military use. Soldier familiarity with these devices
will ensure that applications developed for this platform will
require minimal training. Our model can be used to develop
such an application for secure intelligence gathering.

Additional work is to implement the smartphone web
application described in our model. Future research is to
analyze the performance, storage requirements and memory
utilization of our Android application.

REFERENCES

[1] C. Nanjunda et al., “Robust Encryption for Secure Image Transmission

Over Wireless Channels,” in 2005 IEEE Int. Conf. on Communications,
2005 © IEEE. doi: 10.1109/ICC.2005.1494554

[2] S. Kovacevic et al., “System for Secure Data Exchange in
Telemedicine,” in 9th Int. Conf. on Telecommunications, 2007 © IEEE.
doi: 10.1109/CONTEL.2007.381881

[3] T. Shankar et al., “Image Encryption for Mobile Devices,” in 2010 IEEE
Int. Conf. on Communication Control and Computing Technologies,
2010 © IEEE. doi: 10.1109/ICCCCT.2010.5670766

[4] W. Zhang et al., “Research on Image-Text Encryption Techniques in
Mobile Communications,” in 2010 Second WRI Global Congr. on
Intelligent Systems, 2010 © IEEE. doi: 10.1109/GCIS.2010.184

[5] C. Newman. (1999, June). Network Working Group, Request for
Comments: 2595, Category: Standards Track, Using TLS with IMAP,
POP3 and ACAP [Online]. Available:
http://www.ietf.org/rfc/rfc2595.txt

[6] T. Gibara. (2010, May). Live Camera Previews in Android [Online].
Available: http://www.tomgibara.com/android/camera-source

[7] RSA Laboratories. (2006). PKCS #5 v2.1: Password-Based
Cryptography Standard [Online]. Available FTP: ftp.rsasecurity.com
Directory: pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf

[8] Oracle. Java Cryptography Architecture (JCA) Reference Guide
[Online]. Available:
http://download.oracle.com/javase/6/docs/technotes/guides/security/cryp
to/CryptoSpec.html

[9] Bird Houses by Mark. Chickadee [Online]. Available:
http://www.birdhousesbymark.com/images/chickadee.jpg

[10] javamail-android [Online]. Available:
http://code.google.com/p/javamail-android/

